Hybrid Rice Breeding in India

Dr A S Hari Prasad Principal Scientist (Hybrid Rice) Directorate of Rice Research Hyderabd-50030

Ongoing hybrid rice research activities

- Genetic improvement of maintainers and development of CMS lines
- **Exploitation of inter sub-specific heterosis in rice**
- Development and Evaluation of three line hybrids
- Breeding of parental lines and Hybrids suited to Aerobic and salinity/alkalinity Conditions
- Molecular breeding for Disease Resistance, Fertility Restoration and Wide Compatibility in Rice

Enhancement of heterosisdifferent approaches

Improvement of parental lines Exploitation of inter sub-specific heterosis

Breeding Approaches for Good Quality Restorers

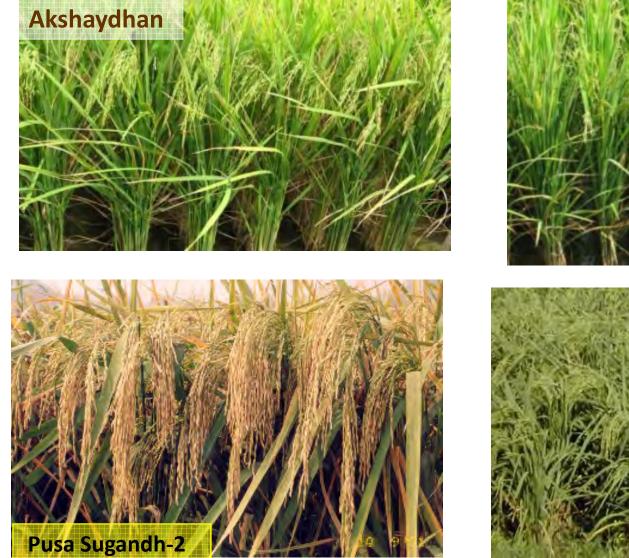
- **R x R cross**
- **R x PR cross**
- PR x PR cross
 - A x R cross

•

•••

•

- A x PR cross followed by selective mating
 - Three way cross approach involving three different restorers


Development of Restorers

Cross	Number of lines		Freq. of R	
	Developed	Tested	(%)	
R x R	350	150	63	
R x R x R	160	105	58	
R x PR	480	250	41	
R x (PR x R)	140	90	52	
R x (PR x PR)	135	80	39	

Promising R-line

Restorers released as varieties

One promising NPT plant

Promising NPT restorer plants in the segregating progenies

Development of maintainers

Type of cross	Number	Freq. of B (%)	
	Developed	Tested	
$B_1 \times B_2$	405	200	65
B ₁ x PM	150	75	40
$B_1x(B_2xB_3)$	135	60	56
B ₁ x(PM x B ₂)	120	70	48
B ₁ x(PM ₁ xPM ₂)	115	55	41
B ₁ x PM//PM	126	40	35

Promising B-line

Development of CMS lines

Maintainer Line	CMS line	Days to maturity	Stigma Exsertion (%)		Out crossing (%) on
			B line	A Line	A line
MI. 15-1-8-1-3	DRR 4A	126	32	84	62
MI. 15-4-3-1-1-4	DRR 5A	132	30	86	65
MI. 15-5-5-2-3	DRR 6A	140	36	79	59
SC ₅ 113-1	DRR 8A	131	24	80	57
MI. 15-1-10-1-1	DRR 9A	132	34	85	69

Promising CMS Lines

Centre	CMS lines
Hyderabad	DRR-4A, DRR-5A, DRR-6A, DRR-9A
Maruteru	APMS 6A, 8A, 9A
Delhi	Pusa 3A, Pusa 6A (Basmati), Pusa 5A
Cuttack	CRMS 31A, CRMS 32A
Coimbatore	COMS 23A,COMS 29A, COMS 30 A,COMS 31A

Gene pools developed

Population	No. of lines		
	Added	Developed	
Restorer Populat	ion		
DRCP 140	12	125	
DRCP 102	10	115	PARENTAL LINE OLVELOPMENT L. INSMUTITE ANNUAL MELTING TO ANNO SAMUELATING TO ANNO B- HEART ANNO TO ANNO B- HEART ANNO B- H
DRCP 103	14	110	A CONTRACTOR OF THE OWNER
Maintainer popu	lation		
DRCP 104	08	70	
DRCP 105	10	90	

MARS - Marker assisted recurrent selection strategy is being adopted To identify restorer and maintainer lines possessing resistance to biotic stresses from the elite breeding lines developed

Line with good stigma exertion

A hybrid with NPT background

A promising restorer line in the *indica japonica* background


Grain quality improvement breeding - progress

Hybrids with medium slender grain type

DRRH-3

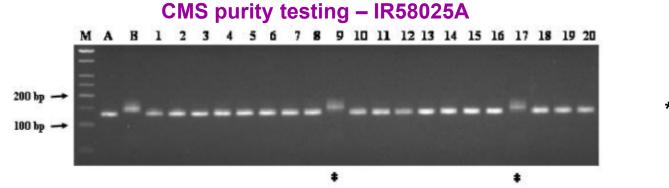
27P11

Breeding of parental lines and Hybrids suited to Aerobic and salinity/alkalinity Conditions

Diverse parental lines, CMS lines and INGER nurseries for aerobic and upland rice screened under direct seeded aerobic (dry plot), alternate wetting and drying and normal transplanted irrigated conditions.

CR 2707-185-16-1-1-1, APO, B644F-MR-6-0-015,IR84887-B-152-CRA-121-1, IR82639, UPLRI 7, CR 691-5812,KRH 2, APMS 6B, DRRH 3 performed well under direct seeded conditions

FL 478, DRR 9B, RPHR 1005, APMS 6B, DRRH 3, NVSR 6029 were found tolerant screening under nutrient salt solution for seedling stage


Best performing and poor performing genotypes

Development of molecular tools for enhancing hybrid rice breeding efficiency

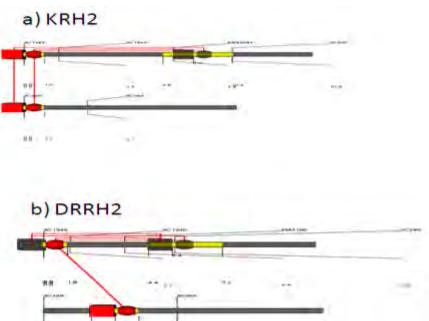
- Assessment of genetic purity of rice hybrids and their parental lines
- Screening of genotypes/varieties for *Rf* and *WCG* Genes
- Incorporation of biotic stress resistance in parental lines of released hybrids

A mitochondrial SSR marker (drrcms) based assessment of genetic purity of WA-CMS lines

*off-types

A Mitochondrial Repeat Specific Marker for Distinguishing Wild Abortive Type Cytoplasmic Male Sterile Rice Lines from their Cognate Isogenic Maintainer Lines

P. Rajendrakumar, A. K. Biswal, S. M. Balachandran, M. S. Ramesha, B. C. Viraktamath, and R. M. Sundaram*


Biotechnology Lab., Crop Improvement Section, Directorate of Rice Research, Rajendranagar, Hyderabad–500 030, Andhra Pradesh, India. Drs. Rajendrakumar and Biswal contributed to this work equally. Received 7 June 2006. *Corresponding author (rms_28@rediffmail.com).

Published in Crop Sci. 47:207-211 (2007).

Mapping of fertility restorer genes for WA-CMS system of rice and its validation

Two reported Rf loci were fine mapped and their interaction was studied Rf3 locus: 23-31%

Rf4 locus: 41-43%

Validation of Rf linked markers

Selection accuracy (%) for combinations of markers for RF3 and RF4 loci

	RfЗ	RG140 /pvu I* 47.3	DRRM-RF3-6 50.0	DRRM-RF3-10 57.3	DRRM-RF3-5 48.4	RM10315 44.8	RM10318 44.9
Rf4							
RM6100*	74.7	79.5	81.0	81.0	82.6	80.2	77.2
TMPPR3*	85.2	85.4	88.4	91.9	91.9	86.2	74.8
DRRM-RF4-10	81.0	84.2	85.3	88.4	86.0	84.2	73.0
DRCG-RF414	86.8	86.1	89.4	91.9	91.9	87.4	75.4
DRCG-RF48	85.2	82.6	89.4	91.9	91.9	87.4	75.4

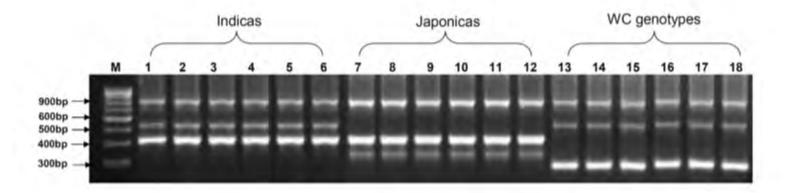
*Reported markers

Amplification patterns of restorer and maintainer lines with the linked markers – *Rf4* and *Rf3* (201 rice lines)

The newly developed microsatellite markers were compared with earlier reported markers (RM6100 and RG140) for their selection efficiency of *Rf* genes among 180 rice lines (known restorers and maintainers)

			Chr1- <i>Rf</i> 3	}
		STS-		STS-RG140
(RG140	RM-Rf3-2	+ RM-Rf3-2
		47.3	56.2	71.2
RM6100	78.4	88.4	93.4	94.6
RM-Rf4-5	86.8	92.8	92.2	96.4
RM6100+RM-Rf4-5	93.4	97.6	97	97.6

Selection accuracy (%) for combinations of markers for Rf3 and Rf4

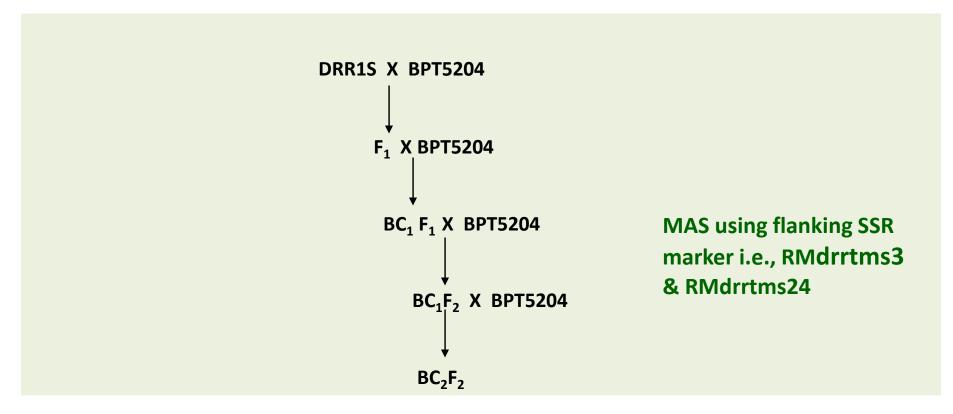

When the markers flanking *Rf3* and *Rf4* were deployed in combination– Excellent selection efficiency (97.6%).

Rf4 – major locus, Rf3 – minor locus

C

We are presently analyzing the candidate genes present in the *Rf4* and *Rf3* region in addition to analysis of additional QTLs for *Rf* trait.

A functional marker for the major wide compatibility gene locus S₅


The marker can clearly distinguish WC genotypes from others......

Mol Breeding (2010) 26:719–727 DOI 10.1007/s11032-010-9482-5	
SHORT COMMUNICATION	maner & Blanci, 20(4), 2-03-020 (2018)
Development and validation of a PCR-based functional	Short Communication
marker system for the major wide-compatible gene locus \$5 in rice	Molecular screening for the presence of wide compatibility gene <i>55</i> neutral allele in the parental lines of hybrid rice
R. M. Sundaram · K. Sakthivel · A. S. Hariprasad · M. S. Ramesha · B. C. Viraktamath · C. N. Neeraja · S. M. Balachandran ·	P. Revathi', Arun Kumar Singh, R. M. Sundaram, P. Senguttuvel, K. B. Kemparaju, A. & Bangrasa J and B. C. Viraktamath
N. Shobha Rani ' P. Revathi ' P. Sandh ya ' Y. Hari	

Genotypes with neutral allele at S₅ locus identified

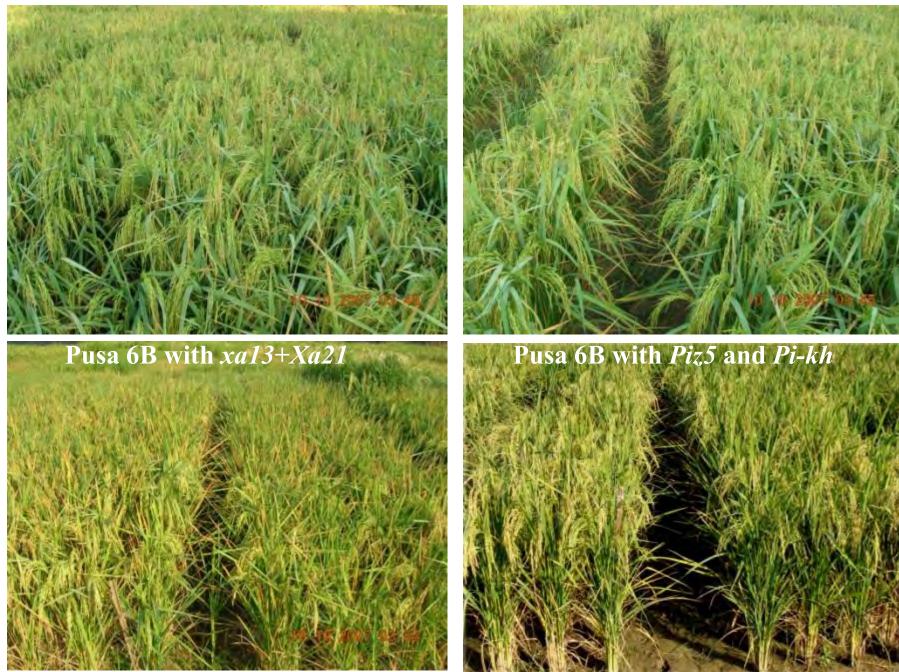
Genotypes	No. of lines screened	No. of lines identified to possess neutral allele at S ₅ locus
Cultivars	154	11
IRRI germplasm lines	207	47
Aromatic rice genotypes	37	12
Restorer lines	157	36
Breeding lines	17	06
Total	572	112

Introgression of the TGMS gene(s) present in DRR1S into Samba Mahsuri (BPT 5204)

Selection criteria: Grain type and yield like Samba Mahsuri + TGMS trait

Introgression of bacterial blight (*Xa21*) & blast (*Pi-k^h*) R genes into hybrid rice parental lines

BK49-77 – An Introgression line of KMR-3R, with good grain quality, complete fertility restoration, high yield and BB resistance

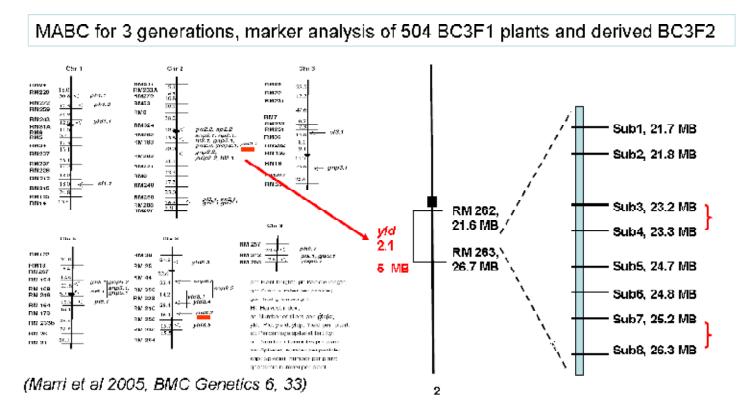

Plant Breeding © 2011 Blackwell Verlag GmbH doi:10.1111/j.1439-0523.2011.01881.x

Marker-assisted improvement of a stable restorer line, KMR-3R and its derived hybrid KRH2 for bacterial blight resistance and grain quality

YADLA HARI^{1*}, KOMMOJU SRINIVASARAO^{1*}, BASVARAJ C. VIRAKTAMATH¹, ARREMSETTY S. HARIPRASAD¹, GOURI S. LAHA¹, MOHAMMED I. AHMED¹, PODISHETTY NATARAJKUMAR¹, MUGALODI S. RAMESHA¹, CHIRRAVURI N. NEERAJA¹, SENA M. BALACHANDRAN¹, NALLATHIGAL S. RANI¹, PIPPALLA BALAJI SURESH¹, KALIDINDI SUJATHA¹, MANISH PANDEY¹, GAJJALA ASHOK REDDY¹, MAGANTI S. MADHAV¹ and RAMAN M. SUNDARAM^{2*}

PRR 78 with *xa13+Xa21*

PRR 78 with *Pikh* and *PiZ5*


Marker-based prediction of grain yield heterosis

- EST-SSRs: Significantly high positive correlation with grain yield heterosis (r = 0.83) as compared to genomic SSRs (r = 0.42)
- A set of 10 'key' informative EST-SSR markers have been identified (RMES2-1, RMES3-2, RMES5-1, RMES6-1, RMES8-1, RMES9-2, RMES10-1, RM151, RM168 and RM169) highly useful for prediction of grain yield heterosis.
- These informative EST-SSR markers can be used for preliminary sorting of parental lines in order to identify heterotic cross combinations

Plant	Plant Breeding 129, 108—111 (2010) © 2009 Blackwell Verlag GmbH	doi:10.1111/j.1439-0523.2009.01633.x
	Short Communication	
	Prediction of heterosis for grain yield in rice markers	using 'key' informative EST-SSR
	I. JAIKISHAN ^{1,*} , P. RAJENDRAKUMAR ^{1,*} , M. S. RAMESHA C. N. NEERAJA ¹ , K. SUJATHA ¹ , K. SRINIVASA RAO ¹ , P. N A. S. RAMAPRASAD ¹ and R. M. SUNDARAM ^{1,2,*}	

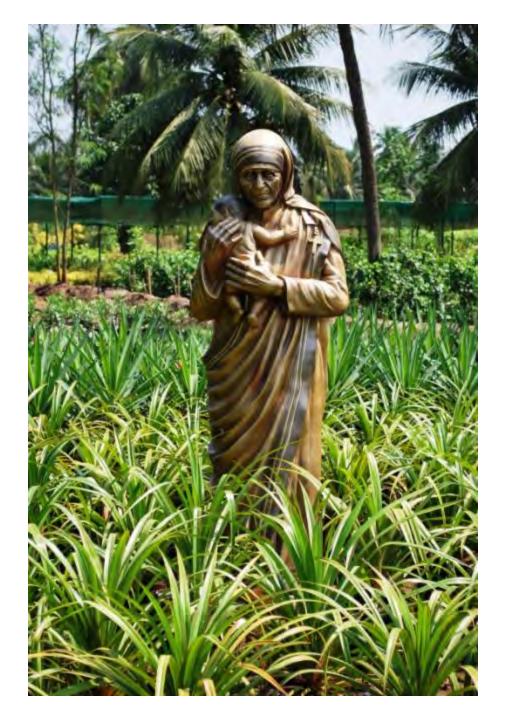
Introgression of yield enhancing QTLs from wild rice into and parental lines

yld2.1 narrowed to two yield sub QTLs for fine mapping

Ref: Swamy and Sarla (2008) Biotech Adv. 26: 106-120

Increased grain number in KMR3-IL50 with *yld2.1* subQTL3-4

Constraints


- Yield stagnation Marginal heterosis unattractive
- Narrow genetic base a major concern
- Diversified consumer preferences Meeting the grain quality requirements
- Few hybrids in late duration & early groups

**

- Limited choice of hybrids for unfavorable ecologies
 - Susceptibility of parental lines to major pests & diseases
- Lack of molecular markers for identification of maintainers like *Rf* genes in case of restorers

Future Strategies

- Use of *I/J* derived parental lines for enhancing level of heterosis.
- Incorporation of resistance to major diseases in parental lines.
- Incremental improvement of parental lines.

